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Copyrighted?

(Release      ) (Release      )

Li et al. 2022. Branch-Train-Merge: Embarrassingly Parallel Training of Expert Language Models

Model merging
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“[…] is likely considered fair use in circumstances where the final model does 
not directly generate content. When it comes to […] generative use cases, 

the analysis becomes more complex.” 

— Henderson et al. 2023. Foundation Models and Fair Use.

Reproduction allowed?
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Colin Raffel. 2023. Collaborative, Communal, & Continual Machine Learning

A masked LM

Reproduction allowed?

A generative LM

Write an original 
story about a boy 
who discovered 

that …

Steve, on 
his 

eleventh 
birthday, 

…

Steve, on 
his 

eleventh 
birthday, 

…

(Used as an editor)

https://colinraffel.com/talks/faculty2023collaborative.pdf
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Data: Open License Corpus
100B token text corpus with public domain & permissively-licensed text

Our Model: SILO
A nonparametric LM that isolates risks in a datastore

Proposal: Distributed LMs
LMs with a set of components, allowing flexible activation at test time

Every date source has their own restrictions

Exciting follow up work! (Next slide)



Follow up (1)

github.com/r-three/common-pile
huggingface.co/collections/PleIAs/common-
corpus-65d46e3ea3980fdcd66a5613

Expanding OLC



Follow up (1)

github.com/r-three/common-pile
huggingface.co/collections/PleIAs/common-
corpus-65d46e3ea3980fdcd66a5613

100 billion  
500 billion tokens

→

Expanding OLC
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Expanding OLC Expanding nonparametric LMs

Shao, …., Min et al. Submitted to NeurIPS 2024



Follow up (2)
Expanding OLC Expanding nonparametric LMs

Shao, …., Min et al. Submitted to NeurIPS 2024

1 billion  
1.4 trillion tokens!

→



    sewonmin.com .    sewon@cs.washington.edu

Please leave feedback at tinyurl.com/sewon-min-talk

Thanks to collaborators

And                for providing compute

http://sewonmin.com
mailto:sewon@cs.washington.edu
https://tinyurl.com/sewon-min-talk

